

Electrical resistivity of the Kondo system Ce1-xLaxPt2Si2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 3161

(http://iopscience.iop.org/0953-8984/11/15/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.214 The article was downloaded on 15/05/2010 at 07:18

Please note that terms and conditions apply.

Electrical resistivity of the Kondo system $Ce_{1-x}La_xPt_2Si_2$

K Bouziane and P de V du Plessis†

f-Electron Magnetism and Heavy-Fermion Physics Programme, Department of Physics, University of the Witwatersrand, Private Bag 3, PO Wits 2050, Johannesburg, South Africa

Received 14 July 1998, in final form 21 December 1998

Abstract. The electrical resistivities of the Kondo system $\operatorname{Ce}_{1-x}\operatorname{La}_x\operatorname{Pt_2}\operatorname{Si_2}(0 \leq x \leq 1)$ are reported. It is observed that the resistivities of the alloy samples are reduced considerably as a result of annealing the samples. The results furthermore indicate the evolution from dense Kondo behaviour to single-ion incoherent Kondo scattering as *x* is increased. The resistivity in the dense Kondo regime shows a maximum which drops from $T_{max} = 62$ K for $\operatorname{CePt_2Si_2}$ to $T_{max} = 36$ K for x = 0.2. Using the relationship $T_{max} \propto T_K \propto \exp(-1/JN(E_F))$ where T_K is the Kondo temperature, *J* is the exchange integral and $N(E_F)$ is the density of states at the Fermi level E_F , and the experimentally observed values of $T_{max}(x)$ leads to $|JN(E_F)|_0 = 0.0645 \pm 0.0004$.

1. Introduction

The investigation of ternary compounds of the type RT_2X_2 , where R is a rare earth element, T is a transition metal and X is Si or Ge, have attracted much interest [1–13]. They exhibit interesting physical properties due to either the localized or de-localized behaviour of the 4f electrons depending on the hybridization strength between 4f electrons and conduction electrons. Their properties include heavy-fermion, Kondo, mixed-valence, magnetic and superconducting behaviour. Of interest in heavy-fermion and related systems are the respective roles played by single-ion effects, like the on-site Kondo mechanism, and by collective phenomena, like the Kondo lattice coherence or the Rudermann–Kittel–Kasuya–Yosida (RKKY) interaction.

The low-temperature properties of CePt₂Si₂ are of recurrent interest since it was proclaimed by Gignoux *et al* [7] as a Kondo lattice compound. The compound crystallizes in a tetragonal structure, but some difference in interpretation concerns the appropriate space group which was given as P4/nmm CaBe₂Ge₂ type [4, 6, 7] or as a new CePt₂Si₂ type structure P4/mm [5]. Resistivity (ρ) measurements on a polycrystalline sample indicate a Kondo-like increase in $\rho(T)$ upon cooling from room temperature, culminating in a peak at $T_{max} = 76$ K and a large drop in $\rho(T)$ towards low temperatures [7]. The peak behaviour in $\rho(T)$ is confirmed in single-crystal studies [11, 12] which also indicate an appreciable anisotropy in $\rho(T)$. Specific heat studies [8] indicate a Kondo temperature $T_K \approx 70$ K. The specific heat lower temperature $C_P(T)$ shows a strong enhancement [8, 14] and $\rho(T)$ tends to a linear temperature dependence [8] suggesting non-Fermi-liquid behaviour [14]. Inelastic neutron scattering indicates a $T_K \approx 170$ K and suggests that its properties be intermediate between those of intermediate-valent and heavy-fermion compounds [9].

† Corresponding author.

0953-8984/99/153161+07\$19.50 © 1999 IOP Publishing Ltd

3162 K Bouziane and P de V du Plessis

Early work indicated that CePt₂Si₂ orders antiferromagnetically at $T_N = 6$ K [6], a temperature where a small peak was also observed in the susceptibility of CePt₂Si₂ [4]. The latter authors suggest that the peak may originate from a second phase in their sample. A metamagnetic transition was indicated for a magnetic field of 2.5 T in the basal plane of a CePt₂Si₂ single crystal below 4 K [10]. This result was confirmed in a second investigation on an as-grown crystal, but the effect disappeared after the crystal was annealed for 8 days at 950 °C [14] and is hence not considered as an intrinsic property of the compound.

In this paper the results of $\rho(T)$ measurements on the Ce_{1-x}La_xPt₂Si₂ series of compounds are reported. The experiments probe primarily the effect of volume dilatation on the Kondo properties of CePt₂Si₂. Similar La substitution studies on antiferromagnetic CePd₂Si₂ indicate that its magnetic behaviour is rather of localized single-ion character than determined by intersite 4f–4f interaction [15, 16]. The effect of annealing our samples (10 days at 900 °C) on the measured $\rho(T)$ has also been investigated.

2. Experimental details

Polycrystalline samples of $Ce_{1-x}La_xPt_2Si_2$ were prepared by arc-melting the constituent elements in a purified argon atmosphere on a water-cooled copper hearth. Elements of the following purity in wt% were used: Ce and La, 99.99; Pt, 99.97 and Si, 99.999. The samples were melted three times to improve their homogeneity. X-ray diffraction measurements ascertained the phase purity of the samples and absence of unreacted material. The diffractograms indicated that the parent compounds CePt₂Si₂ and LaPt₂Si₂, as well as the pseudo-ternary alloys, crystallize in the tetragonal CaBe₂Ge₂ type structure. It was found that the lattice constant *a* increases continuously with La content *x*, while the lattice constant *c* remains approximately constant over the series giving an overall increase in unit cell volume from 176.5 Å³ for CePt₂Si₂ to 182 Å³ for LaPt₂Si₂.

The electrical resistivity was measured in the temperature range 4.2–300 K on sparkerosion cut bar-shaped samples using a standard four-probe method. Temperatures were measured with an Au–0.07 at.% Fe versus chromel thermocouple with an absolute accuracy of $T \pm 0.5$ K. Measurements were taken during slow cooling or heating runs in which the temperature changed at a rate of 0.5 K min⁻¹.

3. Results and discussion

Measurements of $\rho(T)$ for an as-cast CePt₂Si₂ sample and for the same sample after annealing are indicated in figure 1. At higher temperatures $\rho(T)$ shows the characteristic upturn in magnitude upon cooling as is to be expected for incoherent Kondo scattering. A well defined peak in $\rho(T)$ is observed for both the as-cast and annealed case at temperature T_{max} which is slightly higher for the annealed sample compared to the as-cast case. The overall magnitude of the resistivity is considerably reduced as a result of annealing, but the size of the drop in $\rho(T)$ below T_{max} to low temperatures is larger in the annealed case.

A small anomaly in $\rho(T)$ is evident for the as-cast sample at low temperatures. This may be related to the small peak in susceptibility and suggestion of magnetic ordering observed in some studies of CePt₂Si₂ [4, 6]. A possible origin could be the presence of a small amount of a second phase (below the limits of detection by x-rays). Candidates for this are ferromagnetic CePt ($T_c = 6.2$ K) [17] and Ce₇Pt₃ ($T_c = 6.85$ K) [18]. A more fundamental possible origin for such a low-temperature anomaly in Ce compounds is Kondo scattering from crystalline electric field levels as proposed by Maranzana [19] and comprehensively formulated by Cornut

Figure 1. Temperature dependence of the resistivity $\rho(T)$ of CePt₂Si₂ for an as-cast sample and also showing the effect of subsequent annealing of the sample. A small anomaly is evident for the as-cast sample and is discussed in the text. After annealing a Fermi liquid $\rho(T) - \rho_0 = AT^2$ dependence is followed.

and Coqblin [20]. This could lead to more than one Kondo related maximum in resistivity as observed for CeCu₂Si₂ [21]. This latter explanation has also been advanced to account for the presence of a second peak in $\rho(T)$ in the dense Kondo system CePtSi₂ at low temperature [22]. It is indicated in figure 1 that the annealed sample follows a Fermi liquid $\rho(T) - \rho_0 = AT^2$ temperature dependence (solid line) for temperatures below 30 K with $A = 0.07 \ \mu\Omega \ \text{cm K}^{-2}$ in agreement with previous observations [8].

Measurements of $\rho(T)$ showing the evolution from dense Kondo behaviour to single-ion incoherent Kondo scattering as x is increased for the Ce_{1-x}La_xPt₂Si₂ system are shown in figure 2 for the as-cast samples and in figure 3 for the same samples after annealing. As for the CePt₂Si₂ sample, all other samples in the series show a significant reduction of resistivity due to annealing. This beneficial lowering in the magnitude of $\rho(T)$ may firstly be associated with enhancing the metallurgical quality of the samples through the reduction of defects. On the other hand it has been indicated for RPt₂Si₂ compounds, and more specifically for ErPt₂Si₂, that Pt and Si atoms are statistically distributed among the 4(d) and 4(e) positions in the ThCr₂Si₂-type structure [23]. Annealing possibly affects this distribution and hence results in a change in the atomic periodicity in the crystal resulting in a change in the amount of electron scattering. These aspects pertaining to annealing are not further pursued in the present study, apart from observing that the peak in $\rho(T)$ is observed more clearly in the annealed samples for x = 0.1 and 0.2 than for the corresponding as-cast samples. This facilitated the extraction of values of T_{max} for these alloys, the significance of which will be discussed later.

Figure 2. Resistivity against temperature for the as-cast series of $Ce_{1-x}La_xPt_2Si_2$ compounds.

Figure 3. Resistivity against temperature for the annealed (10 days at 900 °C) series of $Ce_{1-x}La_x$ Pt₂Si₂ compounds.

The observed $\rho(T)$ curves in figures 2 or 3 originate from electron scattering from defects (ρ_0) , from phonons (ρ_{ph}) and a magnetic term due to incoherent or coherent Kondo scattering (ρ_{mag})

$$\rho(T) = \rho_0 + \rho_{ph} + \rho_{mag}.$$
(1)

Ideally one would like to obtain ρ_{mag} for the various alloys by subtracting ρ_0 (considered to be primarily temperature independent) and $\rho_{ph}(T)$ from the measured $\rho(T)$. However, it has already been indicated that annealing of these samples leads to a significant reduction in their resistivities and consequently in their ρ_0 values. For the end-members of the series assignments of $\rho_0 = 202 \ \mu\Omega$ cm for x = 0 and $\rho_0 = 183 \ \mu\Omega$ cm for x = 1 are made in the case of the annealed samples. Unfortunately such estimates of ρ_0 are not feasible for samples with $0.1 \le x \le 0.8$. Therefore we rather consider the combination $\rho_0 + \rho_{mag}$ obtained by subtracting $\rho_{ph}(T)$ from the measured $\rho(T)$ data. We approximate $\rho_{ph}(T)$ for alloys across the series by considering the temperature dependence of the resistivity of the non-magnetic LaPt₂Si₂ homologue. Thus $\rho_0 + \rho_{mag}(T)$ for the different alloys are obtained as

$$\rho_0 + \rho_{mag}(T) \approx \rho(T) - (\rho_{LaPt_2Si_2}(T) - \rho_{LaPt_2Si_2}(4K)).$$
(2)

In figure 4 we plot $\rho_0 + \rho_{mag}(T)$ on a $\log_{10}T$ scale for some annealed samples. All alloys exhibit a linear behaviour at higher temperature in agreement with a $(-\ln T)$ non-coherent single-ion Kondo scattering. The resistivity of the CePt₂Si₂ sample shows a peak and the effect of coherence at lower temperature. For low Ce concentrations one obtains a monotonic increase in resistivity with decrease in temperature and with a tendency towards saturation as expected for single-ion Kondo systems.

Figure 4. Comparison of the quantity $\rho_0 + \rho_{mag} = \rho(T) - (\rho_{LaPt_2St_2}(T) - \rho_{LaPt_2St_2}(4K))$ for representative samples of annealed Ce_{1-x}La_xPt₂Si₂ alloys.

Finally, the change in T_{max} with La substitution is addressed. It is evident comparing figures 2 and 3 that annealing enhances the occurrence of the Kondo peak and more readily enable the identification of T_{max} for compositions x = 0.1 and 0.2. Figure 4 shows the decrease in T_{max} with increase of La content and hence in unit cell volume of the system. This result is consistent with that of the pressure dependence of resistivity of CePt₂Si₂ which indicated an increase of T_{max} with pressure and hence with reduction in volume of the unit cell [8]. Our results will now be used to estimate $|JN(E_F)|$ for the system where $N(E_F)$ is the density of states at the Fermi level E_F and the exchange integral J is given by Coqblin and Schrieffer [24] as

$$J = \langle V_{k,f}^2 \rangle U / \varepsilon_f (\varepsilon_f + U).$$
(3)

 $V_{k,f}$ is the matrix element that characterizes the hybridization between 4f and conduction electrons at E_F , U is the Coulomb integral and ε_f is the position of the 4f level relative to the Fermi level. Lavagna *et al* [25] indicated the close relation between T_{max} and T_K for Kondo-lattice systems.

$$T_{max} \propto T_K \propto \exp(-1/|JN(E_F)|).$$
 (4)

For $\operatorname{Ce}_{1-x}\operatorname{La}_x\operatorname{Pt}_2\operatorname{Si}_2$ the substitution of Ce with La increases the volume of the unit cell, which may lead to a decrease in $|JN(E_F)|$ and a decrease in T_K . The following volume dependence is assumed in the compressible Kondo model [25]

$$|JN(E_F)| = |JN(E_F)|_0 \exp(-n(V - V_0)/V_0)$$
(5)

3166 K Bouziane and P de V du Plessis

where $|JN(E_F)|_0$ indicates the value of the quantity at initial volume V_0 and $|JN(E_F)|$ corresponds to volume V. The numerical constant *n* takes a value between 6 and 8 [25–27]. The exponential in equation (5) is expanded for small values of $\Delta V = V - V_0$ and the result for $|JN(E_F)|$ substituted in equation (4), yielding

$$\ln[T_{max}(V)/T_{max}(V_0)] = (n\Delta V/V_0|JN(E_F)|_0.$$
(6)

A least-squares fit analysis of the experimental $T_{max}(x)$ data against equation (6) is plotted as a solid line in figure 5. For ΔV we use values for the unit cell volumes of CePt₂Si₂ (176.5 Å³) and LaPt₂Si₂ (182 Å³) as measured with x-ray diffraction on our samples and assumed the validity of Vegard's rule to scale linearly in order to obtain $\Delta V(x)$. Assuming n = 6, the fit gives $|JN(E_F)|_0 = 0.0645 \pm 0.0004$ for CePt₂Si₂ in the limit of x = 0. A similar calculation may be performed by using the experimentally measured pressure dependence of $T_{max}(dT_{max}/dP = 2.2 \text{ K kbar}^{-1})$ for CePt₂Si₂ [8]. However, we are not aware of measurements of the magnitude of the compressibility of CePt₂Si₂ and hence are unable to make quantitative comparison between the results of their experiment and ours. Our value of $|JN(E_F)|_0 = 0.0645$ may be compared with that of previous studies on heavyfermion compounds CeCu₆ ($|JN(E_F)|_0 = 0.09$ [26]) and CeInCu₂ ($|JN(E_F)|_0 = 0.081$ [27] or 0.047 [28]).

Figure 5. T_{max} as a function of La content for Ce_{1-x}La_xPt₂Si₂. The solid line is a least-squares fit of the data against a theoretical expression based on the compressible Kondo model (equation (6), see text).

4. Conclusions

Electrical resistivity measurements on the Ce_{1-x}La_xPt₂Si₂ ($0 \le x \le 1$) Kondo system indicates a large difference in the observed $\rho(T)$ between as-cast and annealed samples. A small anomaly in $\rho(T)$ is observed at low temperatures for the as-cast CePt₂Si₂ sample, but after annealing of the sample the resistivity follows a Fermi liquid $\rho(T) - \rho_0 = AT^2$ temperature dependence. The study furthermore demonstrates for the Ce_{1-x}La_xPt₂Si₂ alloy series the evolution from dense Kondo behaviour to single-ion incoherent Kondo scattering: at higher temperatures the resistivity, after subtraction of the contribution due to scattering from phonons (ρ_{ph}), follows a (-ln *T*) dependence. The Ce-concentrated samples ($0 \le x \le 0.2$) develops a peak at T_{max} when cooled to lower temperatures. A value of $|JN(E_F)|_0 = 0.0645 \pm 0.0004$ (*J* is the exchange integral and $N(E_F)$ is the density of states at the Fermi level) has been obtained for CePt₂Si₂ using the compressible Kondo model and the observed dependence of T_{max} on La substitution. Future work may entail the effects of substitution on the Pt or Si sites.

Acknowledgments

The South African Foundation for Research Development and the University Research Committee are thanked for financial support. A M Strydom is thanked for valued advice and for performing the x-ray diffraction measurements.

References

- [1] Rossi D, Marazza R and Ferro R 1979 J. Less-Common Met. 66 P17
- [2] Grier B H, Lawrence J M, Murgai V and Parks R D 1984 Phys. Rev. B 29 2664
- [3] Neifeld R A, Croft M, Mihalisin T, Segre C U, Madigan M, Torikachvili M S, Maple M B and DeLong L E 1985 Phys. Rev. B 32 6928
- [4] Dommann A, Hulliger F, Ott H R and Gramlich V 1985 J. Less-Common Met. 110 331
- [5] Hiebl K, Horvath C and Rogl P 1986 J. Less-Common Met. 117 375
- [6] Palstra T T M, Menovsky A A, Nieuwenhuys G J and Mydosh J A 1986 J. Magn. Magn. Mater. 54–57 435
- [7] Gignoux D, Schmitt D, Zerguine M, Ayache C and Bonjour E 1986 Phys. Lett. A 117 145
- [8] Ayache C, Beille J, Bonjour E, Calemczuk R, Creuzet G, Gignoux D, Najib A, Schmitt D, Voiron J and Zerguine M 1987 J. Magn. Magn. Mater. 63/64 329
- [9] Gignoux D, Schmitt D, Zerguine M and Murani A P 1988 J. Magn. Magn. Mater. 76/77 401
- [10] Gignoux D, Schmitt D and Zerguine M 1988 Phys. Rev. B 37 9882
- [11] Bhattacharjee A K, Coqblin B, Raki M, Forro L, Ayache C and Schmitt D 1989 J. Physique 50 2781
- [12] Steeman R A, Dirkmaat A J, Menvovsky A A, Frikkee E, Nieuwenhuys G J and Mydosh J A 1990 Physica B 163 382
- [13] Jaccard D, Behnia K and Sierro J 1992 Phys. Lett. A 163 475
- [14] Dalmas de Réotier P, Yaouanc A, Calemczuk R, Huxley A D, Marcenat C, Bonville P, Lejay P, Gubbens P C M and Mulders A M 1997 Phys. Rev. B 55 2737
- [15] Sampathkumaran E V, Nakazawa Y, Ishikawa M and Vijayaraghavan R 1989 Phys. Rev. B 40 11 452
- [16] Besnus M J, Braghta A and Meyer A 1991 Z. Phys. B 83 207
- [17] Burriel R, Castro M, Blanco J A, Espeso J I, Rodriguez Fernández J, Gómez-Sal J C, Lester C, de Podesta M and McEwen K A 1995 *Physica* B 206/207 264
- [18] Trovarelli O, Sereni J G, Schmerber G and Kappler J P 1995 Physica B 206/207 243
- [19] Maranzana F E 1970 Phys. Rev. Lett. 25 239
- [20] Cornut B and Coqblin B 1972 Phys. Rev. B 5 4541
- [21] Franz W, Steglich F and Wohlleben D 1979 J. Physique Coll. 40 C5 342
- [22] Lee W H, Kwan K S, Klavins P and Shelton R N 1990 Phys. Rev. B 42 6542
- [23] Mayer I and Yetor P D 1977 J. Less-Common Met. 55 171
- [24] Coqblin B and Schrieffer J R 1969 Phys. Rev. 185 847
- [25] Lavagna M, Lacroix C and Cyrot M 1983 J. Phys. F: Met. Phys. 13 1007
- [26] Kagayama T and Oomi G 1993 Transport and Thermal Properties of f-Electron Systems ed G Oomi et al (New York: Plenum) pp 155–64
- [27] Kagayama T, Oomi G, Takahashi H, Mori N, Onuki Y and Komatsubara T 1991 Phys. Rev. B 44 7690
- [28] Du Plessis P de V and Tran V H 1997 J. Phys.: Condens. Matter 9 8527